Mechanisms underlying regulation of respiratory pattern by nicotine in preBötzinger complex.

نویسندگان

  • X M Shao
  • J L Feldman
چکیده

Cholinergic neurotransmission plays a role in regulation of respiratory pattern. Nicotine from cigarette smoke affects respiration and is a risk factor for sudden infant death syndrome (SIDS) and sleep-disordered breathing. The cellular and synaptic mechanisms underlying this regulation are not understood. Using a medullary slice preparation from neonatal rat that contains the preBötzinger Complex (preBötC), the hypothesized site for respiratory rhythm generation, and generates respiratory-related rhythm in vitro, we examined the effects of nicotine on excitatory neurotransmission affecting inspiratory neurons in preBötC and on the respiratory-related motor activity from hypoglossal nerve (XIIn). Microinjection of nicotine into preBötC increased respiratory frequency and decreased the amplitude of inspiratory bursts, whereas when injected into XII nucleus induced a tonic activity and an increase in amplitude but not in frequency of inspiratory bursts from XIIn. Bath application of nicotine (0.2--0.5 microM, approximately the arterial blood nicotine concentration immediately after smoking a cigarette) increased respiratory frequency up to 280% of control in a concentration-dependent manner. Nicotine decreased the amplitude to 82% and increased the duration to 124% of XIIn inspiratory bursts. In voltage-clamped preBötC inspiratory neurons (including neurons with pacemaker properties), nicotine induced a tonic inward current of -19.4 +/- 13.4 pA associated with an increase in baseline noise. Spontaneous excitatory postsynaptic currents (sEPSCs) present during the expiratory period increased in frequency to 176% and in amplitude to 117% of control values; the phasic inspiratory drive inward currents decreased in amplitude to 66% and in duration to 89% of control values. The effects of nicotine were blocked by mecamylamine (Meca). The inspiratory drive current and sEPSCs were completely eliminated by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the presence or absence of nicotine. In the presence of tetrodotoxin (TTX), low concentrations of nicotine did not induce any tonic current or any increase in baseline noise, nor affect the input resistance in inspiratory neurons. In this study, we demonstrated that nicotine increased respiratory frequency and regulated respiratory pattern by modulating the excitatory neurotransmission in preBötC. Activation of nicotinic acetylcholine receptors (nAChRs) enhanced the tonic excitatory synaptic input to inspiratory neurons including pacemaker neurons and at the same time, inhibited the phasic excitatory coupling between these neurons. These mechanisms may account for the cholinergic regulation of respiratory frequency and pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacology of nicotinic receptors in preBötzinger complex that mediate modulation of respiratory pattern.

Nicotine regulates respiratory pattern by modulating excitatory neurotransmission affecting inspiratory neurons within the preBötzinger Complex (preBötC). The nicotinic acetylcholine receptor (nAChR) subtypes mediating these effects are unknown. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve (XIIn) and patch-c...

متن کامل

Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex.

Breathing pattern is postulated to be generated by brainstem neurons. However, determination of the underlying cellular mechanisms, and in particular the synaptic interactions between respiratory neurons, has been difficult. Here we used dual recordings from two distinct populations of brainstem respiratory neurons, hypoglossal (XII) motoneurons, and rhythmogenic (type-1) neurons in the preBötz...

متن کامل

PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation.

Identification of the sites and mechanisms underlying the generation of respiratory rhythm is of longstanding interest to physiologists and neurobiologists. Recently, with the development of novel experimental preparations, especially in vitro en bloc and slice preparations of rodent brainstem, progress has been made In particular, a site in the ventrolateral medulla, the preBötzinger Complex, ...

متن کامل

Mechanisms Leading to Rhythm Cessation in the Respiratory PreBötzinger Complex Due to Piecewise Cumulative Neuronal Deletions1,2,3

The mammalian breathing rhythm putatively originates from Dbx1-derived interneurons in the preBötzinger complex (preBötC) of the ventral medulla. Cumulative deletion of ∼15% of Dbx1 preBötC neurons in an in vitro breathing model stops rhythmic bursts of respiratory-related motor output. Here we assemble in silico models of preBötC networks using random graphs for structure, and ordinary differe...

متن کامل

Outward Currents Contributing to Inspiratory Burst Termination in preBötzinger Complex Neurons of Neonatal Mice Studied in Vitro

We studied preBötzinger Complex (preBötC) inspiratory interneurons to determine the cellular mechanisms that influence burst termination in a mammalian central pattern generator. Neonatal mouse slice preparations that retain preBötC neurons generate respiratory motor rhythms in vitro. Inspiratory-related bursts rely on inward currents that flux Na(+), thus outward currents coupled to Na(+) accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 6  شماره 

صفحات  -

تاریخ انتشار 2001